
1

Experience Porting to Python 3
Larsoft Coordination Meeting

Feb. 11, 2020

H. Greenlee

2

Contents

● Introduction and Overview.
● Porting python scripts.

– Automatic conversion tools – 2to3 program.
– Key differences between python 2 and python 3.

● Print statement.
● Python library modules.
● Byte and unicode strings.

– Accessing web content.
● Interfacing with c/c++.
● Status of larbatch and project.py.

3

Introduction

● What this talk is about.
– This talk is based on my experience in porting python scripts in the

larbatch package (including project.py).
– Also my experience in porting a c++ extension module (fcl module)

in the ubutil package.
● What this talk is not.

– This talk is not a comprehensive list of python 2 and python 3
differences (for that see resources below).

● My goal for all of these porting exercises was to produce single-
source python 2/3 agnostic packages that worked in both python 2
and python 3.

● Resources.
– https://www.python.org/
– http://python-future.org/

https://www.python.org/
http://python-future.org/

4

Overview of Porting Process

● There are many breaking changes between python 2 and python 3.
– Many python 3-style constructs are already available in python 2.7.

These can be immediately adopted for python 2/3 agnostic code.
● E.g. unicode strings.

– In other cases, reasonable workarounds and idioms are available that
work in both python 2 and python 3.

● E.g. using range instead of xrange.
– In still other cases, python 3-style constructs can be made available

in python 2 using the “future” module.
● E.g. python 3 style print function.

– Python 2/3 conditional code.
● Only needed in pure python code because of library module renaming.
● Sometimes needed in C/C++.

5

Automatic Conversion Tool – 2to3

● Python 2.7 and python 3 both include the automatic convertion
program 2to3 (works the same in either python version).

● Invoking 2to3.
– Simple invocation, outputs unified diff patch to standard ouitput.

● 2to3 myscript.py
– Output patch and apply patch in situ.

● 2to3 -w myscript.py
– Listing available automatic conversions.

● 2to3 -l
– Choosing automatic conversions.

● 2to3 -f … myscript.py
– Excluding automatic conversions.

● 2to3 -x … myscript.py

6

2to3 Example Output
$ 2to3 rootstat.py
RefactoringTool: Skipping optional fixer: buffer
RefactoringTool: Skipping optional fixer: idioms
RefactoringTool: Skipping optional fixer: set_literal
RefactoringTool: Skipping optional fixer: ws_comma
RefactoringTool: Refactored rootstat.py
--- rootstat.py (original)
+++ rootstat.py (refactored)
@@ -36,7 +36,7 @@

 myargv = sys.argv
 sys.argv = myargv[0:1]
-if os.environ.has_key('TERM'):
+if 'TERM' in os.environ:
 del os.environ['TERM']
 import ROOT
 ROOT.gErrorIgnoreLevel = ROOT.kError
@@ -58,9 +58,9 @@
 doprint = 0
 if doprint:
 if len(line) > 2:
- print line[2:],
- else:
- print
+ print(line[2:], end=' ')
+ else:
+ print()

 # Analyze root file.

@@ -71,7 +71,7 @@
 keys = root.GetListOfKeys()
 for key in keys:
 objname = key.GetName()
- if not trees.has_key(objname):
+ if objname not in trees:
 obj = root.Get(objname)
 if obj and obj.InheritsFrom('TTree'):
 trees[objname] = obj

7

How to Use 2to3

● 2to3 generates valid python 3 code starting from python 2 code.
– Not guaranteed to be backward compatible with python 2 nor python

2/3 agnostic.
– 2to3 doen't generate compatibility constructs based on future module.

● In fact, it removes those unless you disable this feature using “-x future.”
● Don't blindly invoke 2to3 and accept all updates.
● Do use 2to3 to discover conversion issues in your code.

– Exclude already-resolved issues using option -x.
– Apply automatic conversions one at a time (use option -f), or handle

updates manually.

8

Available 2to3 Conversions
$ 2to3 -l
Available transformations for the-f/--fix option:
apply
asserts
basestring
buffer
dict
except
exec
execfile
exitfunc
filter
funcattrs
future
getcwdu
has_key
idioms
import
imports
imports2
input
intern
isinstance
itertools
itertools_imports
long
map

metaclass
methodattrs
ne
next
nonzero
numliterals
operator
paren
print
raise
raw_input
reduce
renames
repr
set_literal
standarderror
sys_exc
throw
tuple_params
types
unicode
urllib
ws_comma
xrange
xreadlines
zip

9

Python 2/3 Differences I
Print Statement/Function

● The first thing you will notice when porting python 2 to python 3
is differences related to the print statement.
– In python 3, the print statement is replaced by the built in print

function (enclose arguments in parentheses).
● Use “2to3 -w -f print” to do this automatically.

– In python 2/3 agnostic code, add the following future import.
● from __future__ import print_function
● IMO, this is the only useful and necessary future module import.

$ python
Python 2.7.15 (default, Jan 11 2019, 11:17:43)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-28)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> print 1,2
1 2
>>> print(1,2)
(1, 2)
>>> from __future__ import print_function
>>> print(1,2)
1 2

10

Python 2/3 Differences II
Renamed Library Modules

● Several standard library modules have changed their names
between python 2 and python 3. Some common examples:
– Queue → queue
– StringIO → io
– Tkinter → tkinter
– urllib → urllib.request

● I did not notice any instances where module content or api
changed between python 2 and 3, but only module name.

● In python 2/3 agnostic code, put imcompatible imports in a
try/except block:

try:
 import queue
except ImportError:
 import Queue as queue

11

Python 2/3 Differences III
Byte vs. Unicode Strings

● Byte vs. unicode string issues are the number one cause for
surprising or unexpected python 2/3 incompatibilities.
– You need to educate yourself about this issue.

● Python 2.7 and python 3 both support byte and unicode strings.
– The difference between python 2.7 and python 3 is that the default

python string type str is bytes in python 2 and unicode in python 3.
– In python 3, it may be necessary to do explicit conversions between

byte and unicode strings, which is hardly ever necessary in python 2.
● In python 2/3 agnostic code, you should consider that there are

three distinct string types.
– Default python string, type str (literal 'abc').
– Type bytes (literal b'abc').
– Type unicode (literal u'abc').

12

Python 2 and 3 String Examples
$ python
Python 2.7.15 (default, Jan 11 2019, 11:17:43)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-28)] on linux2
Type "help", "copyright", "credits" or "license" for more
information.
>>> type('')
<type 'str'>
>>> type(b'')
<type 'str'>
>>> type(u'')
<type 'unicode'>

$ python
Python 3.7.2 (default, Jan 11 2019, 14:38:58)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-28)] on linux
Type "help", "copyright", "credits" or "license" for more
information.
>>> type('')
<class 'str'>
>>> type(b'')
<class 'bytes'>
>>> type(u'')
<class 'str'>

13

Converting Between Bytes and Unicode

● Converting between bytes and unicode works the same in python 2
and python 3.
– Use method “decode” to convert bytes to unicode.
– Use method “encode” to convert unicode to bytes.

● In python 3, there are no default or implicit conversions between
byte and unicode strings.
– This implies that byte and unicode strings are always unequal.

$ python
Python 3.7.2 (default, Jan 11 2019, 14:38:58)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-28)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> type(b''.decode())
<class 'str'>
>>> type(u''.encode())
<class 'bytes'>

>>> b'abc' == u'abc'
False

14

About Unicode Encodings

● The interpretation of any unicode string depends on its “encoding.”
● The default encoding in python 3 (and in most situations) is “utf-8.”

– In utf-8, ASCII characters are represented by a single byte with value
0-127. Non-ASCII characters are represented using up to four bytes.

● Unicode objects do not know their own encoding. When required,
the encoding must be specified externally.
– Methods encode() and decode(), as well as several other functions and

methods, accept an optional argument to specify the encoding.
Default is always “utf-8.”

● I think it is safe to assume that there are few, if any, use cases for
encodings other than utf-8.

15

String Conversion Use Cases

● Bytes to unicode or vice versa.
– Use decode or encode.

● Convert string of unknown type to bytes.

● Convert string of unknown type to default type str (python 2/3
agnostic).
 if type(unknown_string) == type(''):
 default_string = unknown_string
 elif type(unknown_string) == type(u''):
 default_string = s.encode()
 elif type(unknown_string) == type(b''):
 default_string = s.decode()

 if type(unknown_string) == type(b''):
 byte_string = unknown_string
 elif type(unknown_string) == type(u''):
 byte_string = s.encode()

16

When are String Conversions Necessary?

● Byte strings do not print nicely in python 3. You need to decode.

● Subprocess communication (subprocess module).
– Output obtained from subprocesses via functions

subprocess.check_output or subprocess.Popen.communicate is
generally returned as byte strings.

– Also input sent to subprocesses should be sent as byte string.
● Files opened in binary mode (not an issue when files are opened in

text mode).
● Web content (obtained by whatever method) is generally returned

as byte string.
● C/c++ interfacing. C/c++ strings are generally byte strings.

>>> print(b'abc')
b'abc'
>>> print(b'abc'.decode())
abc

17

String Advice

● In python 3 or python 2/3 agnostic code, use the default string type
(type str) internally.
– I.e., don't try to do everything using byte strings.

● Be sure to open data files in the correct mode (text or binary).
– Text mode is the default.

● Define functions for complicated string conversions (e.g.
conversions involving unknown types).

● In python 2/3 agnostic code, it is safest to accept string input of
either string type.

● Use explicit string conversions at the boundary of your python
universe.

18

Accessing Web Content

● I had some code that used module “pycurl” to access web content.
– Pycurl is not included in standard python ups products (at Fermilab).

Pycurl is a separate ups product.
– There is currently no python 3 version of pycurl.

● I am aware that some people also like to use module “requests.”
– Also not part of standard python. Available as a separate ups

product, or using “pip install.”
● However, my preference is now to use module “urllib.”

– Included in standard python for python 2 and python 3.
– For python 2/3 agnostic code, you will need a try/except block.

try:
 import urllib.request as urlrequest
except ImportError:
 import urllib as urlrequest

19

Database Programming

● I haven't tried database programming in python 3 (yet).
● When converting a database python program for whatever database

(postgres, mysql, sqlite), make sure that you understand whether
the database api returns and accepts bytes or unicode string.

20

Interfacing with C/C++

● String conversion issues.
● Extension modules.
● Linking against python.

21

Python 2/3 C/C++ String Conversions

● Converting a python string of either type to c++ string.

● Converting c++ string to python default string.

#include “Python.h”

PyObject* obj; // Python string (input).
std::string s; // c++ string (output).
if(PyBytes_Check(obj))
 s = std::string(PyBytes_AsString(obj));
else if(PyUnicode_Check(obj)) {
 PyObject* bytes = PyUnicode_AsUTF8String(obj);
 s = std::string(PyBytes_AsString(bytes));
}

#include “Python.h”

std::string s; // c++ string (input).
PyObject* obj = 0; // Python string (output).
#if PY_MAJOR_VERSION >= 3
 obj = PyUnicode_FromString(s.c_str());
#else
 obj = PyBytes_FromString(s.c_str());
#endif

22

Extension Modules

● Python 2 and python 3 extension modules require different
initialization (need conditional compilation).

#if PY_MAJOR_VERSION >= 3

static struct PyModuleDef fclmodule = {
 PyModuleDef_HEAD_INIT,
 "fcl", // Module name.
 0, // Module documentation.
 -1, // Module state size (this module has no state).
 fclmodule_methods // Method table.
};

PyMODINIT_FUNC
PyInit_fcl(void)
{
 return PyModule_Create(&fclmodule);
}

#else

extern "C" {
 void initfcl()
 {
 Py_InitModule("fcl", fclmodule_methods);
 }
}

#endif

23

Linking C/C++ Against Python 2/3

● Python 2 and python 3 require differet link libraries.
– Use program python-config to discover link libraries.

● You'll need some kind of conditional in CMakeLists.txt (or invoke
python-config).

$ python-config --libs
-lpython3.7m -lpthread -ldl -lutil -lm

$ python-config --libs
-lpython2.7 -lpthread -ldl -lutil -lm

SET (PYTHON_VERSION $ENV{PYTHON_VERSION})
if(PYTHON_VERSION MATCHES v3)
 find_library(PYTHON NAMES python3.7m PATHS $ENV{PYTHON_LIB})
else()
 find_library(PYTHON NAMES python2.7 PATHS $ENV{PYTHON_LIB})
endif()

art_make(LIBRARY_NAME fcl
 LIB_LIBRARIES ${FHICLCPP}
 cetlib
 cetlib_except
 ${PYTHON})

24

Status of Larbatch and Project.py

● Last week's integration release included a new version of larbatch,
v01_52_00 that was supposed to be python 2 and python 3
compliant.

● I did make some additional updates since then, which updates are
merged to develop branch of main (github) larbatch repo. Should
be included in this week's larsoft integration release.

● Going forward, the larbatch ups product is supposed to be python
2/3 agnostic. There is no “py2” or “py3” qualifier.

● Experiments may need to update their supporting python code
(e.g. python module experiment_utilities.py).

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

